From 24cd8bc11345395f1a0bb64d61e51e207d8b3ace Mon Sep 17 00:00:00 2001 From: 53hornet <53hornet@gmail.com> Date: Sat, 2 Feb 2019 23:10:20 -0500 Subject: Init. --- hw3/carpenter_adam_hw3.py | 171 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 171 insertions(+) create mode 100755 hw3/carpenter_adam_hw3.py (limited to 'hw3/carpenter_adam_hw3.py') diff --git a/hw3/carpenter_adam_hw3.py b/hw3/carpenter_adam_hw3.py new file mode 100755 index 0000000..050afc5 --- /dev/null +++ b/hw3/carpenter_adam_hw3.py @@ -0,0 +1,171 @@ +#!/usr/bin/python2.7 +# Authored by Adam Carpenter +# Initial code base authored by Prof. Dmitry Evtyushkin + +import random +import time +from mr import is_probable_prime as is_prime + +def int_to_bin(i): + o = '{0:08b}'.format(i) + o = (8 - (len(o) % 8)) * '0' + o + return o + +# def int_to_bin(i): +# # deprecated; incorrect output +# return "{0:08b}".format(i) + +def bin_to_int(b): + return int(b,2) + +def str_to_bin(s): + o = '' + for i in s: + o += '{0:08b}'.format(ord(i)) + return o + +def bin_to_str(b): + l = [b[i:i+8] for i in xrange(0,len(b),8)] + o = '' + for i in l: + o+=chr(int(i,2)) + return o + +def egcd(a, b): # can be used to test if numbers are co-primes + if a == 0: + return (b, 0, 1) + else: + g, y, x = egcd(b % a, a) + return (g, x - (b // a) * y, y) + #if g==1, the numbers are co-prime + +def modinv(a, m): + #returns multiplicative modular inverse of a in mod m + g, x, y = egcd(a, m) + if g != 1: + raise Exception('modular inverse does not exist') + else: + return x % m + +def sxor(a, b): + # returns the exclusive-or result of two strings/characters + if a == b: + return "0" + else: + return "1" + +def srshift(a, b = "0"): + # performs right-shift-like operation on a string; + # b serves as the replacement most-significant bit + return b + a[:-1] + +class lfsr: + # Class implementing linear feedback shift register. Please note that it operates + # with binary strings, strings of '0's and '1's. + taps = [] + + def __init__ (self, taps): + # Receives a list of taps. Taps are the bit positions that are XOR-ed + # together and provided to the input of lfsr + + globals()['taps'] = taps + self.register = '1111111111111111' + # initial state of lfsr + + def clock(self, i='0'): + # Receives input bit and simulates one cycle + # This include xoring, shifting, updating input bit and returning output + # input bit must be XOR-ed with the taps!! + + # grab output bit + outputBit = self.register[-1] + + # xor all tap values together + tapXor = "0" + + for tap in taps: + tapXor = sxor(tapXor, self.register[tap]) + + # xor input bit with resulting tap + inputBit = sxor(i, tapXor) + + # shift register bits and prepend input bit to stream + self.register = srshift(self.register, inputBit) + + # return output bit + return outputBit + + def seed(self, s): + # This function seeds the lfsr by feeding all bits from s into input of + # lfsr, output is ignored + for i in s: + o = self.clock(i) + + def gen(self,n,skip=0): + # This function clocks lfsr 'skip' number of cycles ignoring output, + # then clocks 'n' cycles more and records the output. Then returns + # the recorded output. This is used as hash or pad + for x in xrange(skip): + self.clock() + out = '' + for x in xrange(n): + out += self.clock() + return out + +def H(inp): + # Hash function, it must initialize a new lfsr, seed it with the inp binary string + # skip and read the required number of lfsr output bits, returns binary string + + l = lfsr([2,4,5,7,11,14]) + l.seed(inp) + return l.gen(56, 1000) + +def enc_pad(m,p): + # encrypt message m with pad p, return binary string + # note: function assumes pad p is the same length + # as message m, per the definition of OTP + o = '' + + for i in range(0, len(m)): + o += sxor(m[i], p[i]) + + return o + +def GenRSA(): + # Function to generate RSA keys. Use the Euler's totient function (phi) + # As we discussed in lectures. Function must: 1) seed python's random number + # generator with time.time() 2) Generate RSA primes by keeping generating + # random integers of size 512 bit using the random.getrandbits(512) and testing + # whether they are prime or not using the is_prime function until both primes found. + # 3) compute phi 4) find e that is coprime to phi. Start from e=3 and keep + # incrementing until you find a suitable one. 4) derive d 5) return tuple (n,e,d) + # n - public modulo, e - public exponent, d - private exponent + + # seed random number generator + random.seed(time.time()) + + # generate rsa primes + p = random.getrandbits(512) + q = random.getrandbits(512) + + while not is_prime(p): + p = random.getrandbits(512) + + while not is_prime(q): + q = random.getrandbits(512) + + # compute n and phi + n = p * q + phi = (p - 1) * (q - 1) + + # find an e coprime to phi + e = 3 + + while egcd(e, phi)[0] != 1: + e += 1 + + # derive d + d = modinv(e, phi) + + # return the tuple + return (n,e,d) -- cgit v1.2.3