blob: 33a44de5a73a920bca526cc859f0f25e23efdb09 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
#include<iostream>
#include"table.hpp"
Table::Table(bool useChaining = false) {
/* This constructor takes in a boolean value as a parameter.
The boolean value useChaining represents
whether or not the user intends on using separate chaining
as their hashing method. When set to true, the constructor
will create a table object represented by an array of pointers
to the heads of linked lists, a structure more appropriate
for separate chaining. When useChaining is false, the
constructor defaults to a simple array-based hash table.
*/
if (useChaining) {
// initialize array of linked list heads
for (int i = 0; i < 10; i++) {
tableHeads[i] = NULL;
}
}
else {
unhashable = false;
// initialize array with 'empty' values
for (int i = 0; i < 10; i++) {
tableArray[i] = EMPTY;
unhashableList[i] = EMPTY;
}
}
}
void Table::hashLinear(int intList[]) {
/* Implementation of hash table insertion using linear probing.
This method takes in an array of integers (10 items max) and hashes
them into a table object using linear probing for conflict resolution.
This means that the probe distance is equal to the number of probing
attempts, or, f(i) = i. An item cannot be hashed into the table if the probing
results in cycling around to the original insertion location again.
*/
int count = 0;
int slotIndex = 0;
int originalSlotIndex;
bool probeFinished;
while (intList[count] != EMPTY && count < 10) {
slotIndex = intList[count] % 10;
if (tableArray[slotIndex] == EMPTY) { // slot empty; insert item
tableArray[slotIndex] = intList[count];
}
else { // slot taken; must probe
originalSlotIndex = slotIndex;
probeFinished = false;
while (!probeFinished) {
slotIndex++; // f(i) = i
if (slotIndex > 9) { // wrap around array
slotIndex = slotIndex - 10;
}
if (slotIndex == originalSlotIndex) { // gone over whole array; end probing
unhashable = true;
unhashableList[count] = intList[count];
probeFinished = true;
}
if (tableArray[slotIndex] == EMPTY) { // slot empty; insert item
tableArray[slotIndex] = intList[count];
probeFinished = true;
}
}
}
count++;
}
}
void Table::hashQuad(int intList[]) {
/* Implementation of hash table insertion using quadratic probing.
This method takes in an array of integers (10 items max) and hashes
them into a table object using quadratic probing for conflict resolution.
This means that the probe distance is equal to the number of probing
attempts squared, or, f(i) = i^2. An item cannot be hashed into the table if the probing
results in cycling around to the original insertion location again.
*/
int count = 0;
int probeCount = 0;
int slotIndex = 0;
int originalSlotIndex;
bool probeFinished;
while (intList[count] != EMPTY && count < 10) {
slotIndex = intList[count] % 10;
if (tableArray[slotIndex] == EMPTY) { // slot empty; insert item
tableArray[slotIndex] = intList[count];
}
else { // slot taken; must probe
originalSlotIndex = slotIndex;
probeCount = 0;
probeFinished = false;
while (!probeFinished) {
probeCount++;
slotIndex = originalSlotIndex + (probeCount * probeCount); // f(i) = i^2
while (slotIndex > 9) { // wrap around array multiple times
slotIndex = slotIndex - 10;
}
if (probeCount > 5) {
unhashable = true;
unhashableList[count] = intList[count];
probeFinished = true;
}
if (tableArray[slotIndex] == EMPTY) { // slot empty; insert item
tableArray[slotIndex] = intList[count];
probeFinished = true;
}
}
}
count++;
}
}
void Table::hashDouble(int intList[]) {
/* Implementation of hash table insertion using double hashing.
This method takes in an array of integers (10 items max) and hashes
them into a table object using a second hash function for conflict resolution.
The second hash function is equivalent to f(x) = 7 - x % 7. An item cannot be
hashed into the table if the probing results in cycling around to the original
insertion location again.
*/
int count = 0;
int probeCount = 0;
int slotIndex = 0;
int originalSlotIndex;
bool probeFinished;
while (intList[count] != EMPTY && count < 10) {
slotIndex = intList[count] % 10;
if (tableArray[slotIndex] == EMPTY) { // slot empty; insert item
tableArray[slotIndex] = intList[count];
}
else { // slot taken; must probe
originalSlotIndex = slotIndex;
probeCount = 0;
probeFinished = false;
while (!probeFinished) {
probeCount++;
slotIndex = originalSlotIndex + (probeCount * (7 - intList[count] % 7)); // f(x) = 7 - x % 7
while (slotIndex > 9) { // wrap around array
slotIndex = slotIndex - 10;
}
if (slotIndex == originalSlotIndex) { // gone over whole array; end probing
unhashable = true;
unhashableList[count] = intList[count];
probeFinished = true;
}
if (tableArray[slotIndex] == EMPTY) { // slot empty; insert item
tableArray[slotIndex] = intList[count];
probeFinished = true;
}
}
}
count++;
}
}
void Table::hashChaining(int intList[]) {
/* Implementation of hash table insertion using separate chaining.
This method takes in an array of integers (10 items max) and hashes
the items into a table object using separate chaining for conflict
resolution. This means for each insertion index, a linked list exists
where all of the values that hash to that index are inserted at the head
of the linked list.
*/
int count = 0;
int slotIndex = 0;
NODE *newHead;
while (intList[count] != EMPTY && count < 10) {
newHead = new NODE();
slotIndex = intList[count] % 10;
newHead->key = intList[count];
newHead->next = tableHeads[slotIndex];
tableHeads[slotIndex] = newHead;
count++;
}
}
void Table::printTable(bool useChaining = false) {
/* A method for printing out the contents of a hash table object
that creates a visual representation of the hash table and its
contents and prints them to the console (or a file if directed).
This method takes in a boolean value letting the method know
whether or not to print a separately-chained linked hash table
with a linke list or a hash table based on an array (ex. linear
probing).
*/
if (useChaining) {
NODE *node = new NODE();
// print visual hash table of items from linked lists
for (int i = 0; i < 10; i++) {
std::cout << "[" << i << "]" << "-> ";
for (node = tableHeads[i]; node != NULL; node = node->next) {
std::cout << node->key << " -> ";
delete node; // have to clean up nodes from memory
}
std::cout << "_\n";
}
}
else {
// print visual hash table of items from array
for (int i = 0; i < 10; i++) {
std::cout << "[" << i << "]" << " ";
if (tableArray[i] != EMPTY) {
std::cout << tableArray[i];
}
std::cout << "\n";
}
// print items that could not be inserted
if (unhashable) {
std::cout << "The following item(s) could not be inserted: ";
for (int i = 0; i < 10; i++) {
if (unhashableList[i] != EMPTY) {
std::cout << unhashableList[i] << " ";
}
}
std::cout << "\n";
}
}
}
|