diff options
author | 53hornet <53hornet@gmail.com> | 2019-02-02 23:10:20 -0500 |
---|---|---|
committer | 53hornet <53hornet@gmail.com> | 2019-02-02 23:10:20 -0500 |
commit | 24cd8bc11345395f1a0bb64d61e51e207d8b3ace (patch) | |
tree | ef8242cda1175c11dd4a565e1ba16cb531c11c47 /hw3 | |
download | csci454-24cd8bc11345395f1a0bb64d61e51e207d8b3ace.tar.xz csci454-24cd8bc11345395f1a0bb64d61e51e207d8b3ace.zip |
Diffstat (limited to 'hw3')
-rw-r--r-- | hw3/.gitignore | 2 | ||||
-rwxr-xr-x | hw3/carpenter_adam_hw3.py | 171 | ||||
-rwxr-xr-x | hw3/mr.py | 78 |
3 files changed, 251 insertions, 0 deletions
diff --git a/hw3/.gitignore b/hw3/.gitignore new file mode 100644 index 0000000..dbfb78d --- /dev/null +++ b/hw3/.gitignore @@ -0,0 +1,2 @@ +*.log +*.pyc diff --git a/hw3/carpenter_adam_hw3.py b/hw3/carpenter_adam_hw3.py new file mode 100755 index 0000000..050afc5 --- /dev/null +++ b/hw3/carpenter_adam_hw3.py @@ -0,0 +1,171 @@ +#!/usr/bin/python2.7 +# Authored by Adam Carpenter +# Initial code base authored by Prof. Dmitry Evtyushkin + +import random +import time +from mr import is_probable_prime as is_prime + +def int_to_bin(i): + o = '{0:08b}'.format(i) + o = (8 - (len(o) % 8)) * '0' + o + return o + +# def int_to_bin(i): +# # deprecated; incorrect output +# return "{0:08b}".format(i) + +def bin_to_int(b): + return int(b,2) + +def str_to_bin(s): + o = '' + for i in s: + o += '{0:08b}'.format(ord(i)) + return o + +def bin_to_str(b): + l = [b[i:i+8] for i in xrange(0,len(b),8)] + o = '' + for i in l: + o+=chr(int(i,2)) + return o + +def egcd(a, b): # can be used to test if numbers are co-primes + if a == 0: + return (b, 0, 1) + else: + g, y, x = egcd(b % a, a) + return (g, x - (b // a) * y, y) + #if g==1, the numbers are co-prime + +def modinv(a, m): + #returns multiplicative modular inverse of a in mod m + g, x, y = egcd(a, m) + if g != 1: + raise Exception('modular inverse does not exist') + else: + return x % m + +def sxor(a, b): + # returns the exclusive-or result of two strings/characters + if a == b: + return "0" + else: + return "1" + +def srshift(a, b = "0"): + # performs right-shift-like operation on a string; + # b serves as the replacement most-significant bit + return b + a[:-1] + +class lfsr: + # Class implementing linear feedback shift register. Please note that it operates + # with binary strings, strings of '0's and '1's. + taps = [] + + def __init__ (self, taps): + # Receives a list of taps. Taps are the bit positions that are XOR-ed + # together and provided to the input of lfsr + + globals()['taps'] = taps + self.register = '1111111111111111' + # initial state of lfsr + + def clock(self, i='0'): + # Receives input bit and simulates one cycle + # This include xoring, shifting, updating input bit and returning output + # input bit must be XOR-ed with the taps!! + + # grab output bit + outputBit = self.register[-1] + + # xor all tap values together + tapXor = "0" + + for tap in taps: + tapXor = sxor(tapXor, self.register[tap]) + + # xor input bit with resulting tap + inputBit = sxor(i, tapXor) + + # shift register bits and prepend input bit to stream + self.register = srshift(self.register, inputBit) + + # return output bit + return outputBit + + def seed(self, s): + # This function seeds the lfsr by feeding all bits from s into input of + # lfsr, output is ignored + for i in s: + o = self.clock(i) + + def gen(self,n,skip=0): + # This function clocks lfsr 'skip' number of cycles ignoring output, + # then clocks 'n' cycles more and records the output. Then returns + # the recorded output. This is used as hash or pad + for x in xrange(skip): + self.clock() + out = '' + for x in xrange(n): + out += self.clock() + return out + +def H(inp): + # Hash function, it must initialize a new lfsr, seed it with the inp binary string + # skip and read the required number of lfsr output bits, returns binary string + + l = lfsr([2,4,5,7,11,14]) + l.seed(inp) + return l.gen(56, 1000) + +def enc_pad(m,p): + # encrypt message m with pad p, return binary string + # note: function assumes pad p is the same length + # as message m, per the definition of OTP + o = '' + + for i in range(0, len(m)): + o += sxor(m[i], p[i]) + + return o + +def GenRSA(): + # Function to generate RSA keys. Use the Euler's totient function (phi) + # As we discussed in lectures. Function must: 1) seed python's random number + # generator with time.time() 2) Generate RSA primes by keeping generating + # random integers of size 512 bit using the random.getrandbits(512) and testing + # whether they are prime or not using the is_prime function until both primes found. + # 3) compute phi 4) find e that is coprime to phi. Start from e=3 and keep + # incrementing until you find a suitable one. 4) derive d 5) return tuple (n,e,d) + # n - public modulo, e - public exponent, d - private exponent + + # seed random number generator + random.seed(time.time()) + + # generate rsa primes + p = random.getrandbits(512) + q = random.getrandbits(512) + + while not is_prime(p): + p = random.getrandbits(512) + + while not is_prime(q): + q = random.getrandbits(512) + + # compute n and phi + n = p * q + phi = (p - 1) * (q - 1) + + # find an e coprime to phi + e = 3 + + while egcd(e, phi)[0] != 1: + e += 1 + + # derive d + d = modinv(e, phi) + + # return the tuple + return (n,e,d) diff --git a/hw3/mr.py b/hw3/mr.py new file mode 100755 index 0000000..092d294 --- /dev/null +++ b/hw3/mr.py @@ -0,0 +1,78 @@ +import random + +_mrpt_num_trials = 5 # number of bases to test + +def is_probable_prime(n): + """ + Miller-Rabin primality test. + + A return value of False means n is certainly not prime. A return value of + True means n is very likely a prime. + + >>> is_probable_prime(1) + Traceback (most recent call last): + ... + AssertionError + >>> is_probable_prime(2) + True + >>> is_probable_prime(3) + True + >>> is_probable_prime(4) + False + >>> is_probable_prime(5) + True + >>> is_probable_prime(123456789) + False + + >>> primes_under_1000 = [i for i in range(2, 1000) if is_probable_prime(i)] + >>> len(primes_under_1000) + 168 + >>> primes_under_1000[-10:] + [937, 941, 947, 953, 967, 971, 977, 983, 991, 997] + + >>> is_probable_prime(6438080068035544392301298549614926991513861075340134\ +3291807343952413826484237063006136971539473913409092293733259038472039\ +7133335969549256322620979036686633213903952966175107096769180017646161\ +851573147596390153) + True + + >>> is_probable_prime(7438080068035544392301298549614926991513861075340134\ +3291807343952413826484237063006136971539473913409092293733259038472039\ +7133335969549256322620979036686633213903952966175107096769180017646161\ +851573147596390153) + False + """ + assert n >= 2 + # special case 2 + if n == 2: + return True + # ensure n is odd + if n % 2 == 0: + return False + # write n-1 as 2**s * d + # repeatedly try to divide n-1 by 2 + s = 0 + d = n-1 + while True: + quotient, remainder = divmod(d, 2) + if remainder == 1: + break + s += 1 + d = quotient + assert(2**s * d == n-1) + + # test the base a to see whether it is a witness for the compositeness of n + def try_composite(a): + if pow(a, d, n) == 1: + return False + for i in range(s): + if pow(a, 2**i * d, n) == n-1: + return False + return True # n is definitely composite + + for i in range(_mrpt_num_trials): + a = random.randrange(2, n) + if try_composite(a): + return False + + return True # no base tested showed n as composite |