1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
use crate::{Acm, Message};
use anyhow::Result;
use rayon::iter::IntoParallelIterator;
pub use rayon::iter::ParallelIterator;
use std::collections::HashMap;
/// Allows for more convenient running of OSSI [Message]s on one or more [Acm]s,
/// parallelizing over the ACMs and (optionally) caching results for faster future runs.
///
/// This is the intended high-level use of Angelshark. It holds a collection of
/// "jobs", which are tagged with ACM names/labels and their associated logins ([Acm]s) and [Message]s).
#[derive(Default, Debug, Clone)]
pub struct AcmRunner(HashMap<String, (Acm, Vec<Message>)>);
impl AcmRunner {
/// Constructs a new [AcmRunner] from tagged [Acm]s and [Message]s.
pub fn new(acms: Vec<(String, Acm)>, inputs: Vec<(String, Message)>) -> Self {
let mut runner = AcmRunner::default();
for (name, acm) in acms {
runner.register_acm(&name, acm);
}
for (name, input) in inputs {
runner.queue_input(&name, &input);
}
runner
}
/// Registers an [Acm] as `job_name` in the runner.
pub fn register_acm(&mut self, job_name: &str, acm: Acm) -> &mut Self {
self.0.insert(job_name.into(), (acm, Vec::new()));
self
}
/// Queues a [Message] to be run on an [Acm] registered as `job_name`.
pub fn queue_input(&mut self, job_name: &str, input: &Message) -> &mut Self {
if let Some((_, inputs)) = self.0.get_mut(job_name) {
inputs.push(input.clone());
}
self
}
/// Runs the queued [Message] inputs on the registered [Acm]s and returns
/// the results. The results are returned as an iterator. The iterator must
/// be in some way consumed, collected, or iterated over before the runner
/// starts running commands, i.e. it is lazy. Once this begins, results are
/// computed in parallel over the ACMs. The order of outputs is undefined.
pub fn run(self) -> impl ParallelIterator<Item = RunOutput> {
self.0
.into_par_iter()
.filter(|(_, (_, inputs))| !inputs.is_empty())
.map(|(job_name, (acm, inputs))| (job_name, acm.run(&inputs)))
}
/// Functionally equivalent to [Self::run] but caches results for 30 minutes
/// to make future lookups faster.
pub fn run_cached(self) -> impl ParallelIterator<Item = RunOutput> {
self.0
.into_par_iter()
.filter(|(_, (_, inputs))| !inputs.is_empty())
.map(|(job_name, (acm, inputs))| (job_name, acm.run_cached(&inputs)))
}
/// Functionally equivalent to [Self::run] but returns manual pages for
/// inputs instead of executing them.
pub fn manuals(self) -> impl ParallelIterator<Item = ManualOutput> {
self.0
.into_par_iter()
.filter(|(_, (_, inputs))| !inputs.is_empty())
.map(|(job_name, (acm, inputs))| (job_name, acm.manual(&inputs)))
}
}
/// Every resulting entry of [AcmRunner::run]
pub type RunOutput = (String, Result<Vec<Message>>);
/// Every resulting entry of [AcmRunner::manuals]
pub type ManualOutput = (String, Result<String>);
|