blob: c37ca0f87f53d157e1f3fbef5a6f10aff1c6df77 (
plain) (
tree)
|
|
/******************************************************************/
/* This file is part of the homework assignments for CSCI-427/527 */
/* at The College of William & Mary and authored by Pieter Peers. */
/* No part of this file, whether altered or in original form, can */
/* be distributed or used outside the context of CSCI-427/527 */
/* without consent of either the College of William & Mary or */
/* Pieter Peers. */
/******************************************************************/
#include <cassert>
#include <algorithm>
#include "boundedCompound.h"
#include "intersector_factory_base.h"
/////////////////
// Constructor //
/////////////////
boundedCompound::boundedCompound(void)
: boundedPrimitive()
{
_transform = transformation3d();
_intersector = nullptr;
}
boundedCompound::boundedCompound(const transformation3d& transform, const std::shared_ptr<const shader_base>& shader)
: boundedPrimitive(boundingBox(), shader)
{
_transform = transform;
_intersector = nullptr;
}
/////////////
// Methods //
/////////////
intersectionPoint boundedCompound::intersect(const ray& r) const
{
// sanity check
assert(_intersector);
// inverse transform ray
ray transformedRay = inverseTransform(r, _transform);
// pass intersection computation to _intersector
intersectionPoint ip = _intersector->intersect( transformedRay );
// if no shader, insert current shader
if(!ip.hasShader()) ip.setShader(_shader);
// transform the intersection point
ip.transform(_transform);
// Done.
return ip;
}
float boundedCompound::area(void) const
{
float total_area = 0.0f;
for_each(compounds().begin(), compounds().end(), [&](const std::shared_ptr<const boundedPrimitive>& prim)
{
total_area += prim->area();
});
// Done.
return total_area;
}
surfaceSample boundedCompound::sample(float r1, float r2) const
{
float total_area = area();
auto primItr = compounds().begin();
// sample compounds (proportional to area)
float prim_area = (*primItr)->area();
float residual = r1*total_area;
while(residual > prim_area && std::next(primItr) != compounds().end())
{
residual -= prim_area;
primItr++;
prim_area = (*primItr)->area();
}
// rescale the random variable
r1 = std::min(residual / prim_area, 1.0f);
// sample point in triangle (and adjust pdf to include the above selection)
surfaceSample sample = (*primItr)->sample(r1, r2) * (prim_area / total_area);
// apply transformation
sample.transform(_transform);
// Done.
return sample;
}
void boundedCompound::initialize(const intersector_factory_base& ifb)
{
// create the _intersector
_intersector = ifb(*this);
}
void boundedCompound::initializeBoundingBox(void)
{
// compute the bounding box in world coordinates
_bb = boundingBox();
for_each(compounds().begin(), compounds().end(), [&](const std::shared_ptr<const boundedPrimitive>& prim)
{
_bb += transform(prim->boundingbox(), _transform);
});
}
bool boundedCompound::hasShader(void) const
{
// check if this has a shader
if(boundedPrimitive::hasShader()) return true;
// check if each child has a shader
for(auto itr = compounds().begin(); itr != compounds().end(); itr++)
{
if(!(*itr)->hasShader()) return false;
}
// Done.
return true;
}
void boundedCompound::_print(std::ostream& s) const
{
s << "boundedCompound (" << _bb << ", " << compounds().size() << " compounds)";
}
|